
To appear in Proceedings of the Twenty-sixth Annual Computer Software and Applications
Conference, IEEE (Oxford, England, August 2002).

On the Response Policy of Software Decoys:
Conducting Software-based Deception in the Cyber Battlespace

James Bret Michael
Department of Computer Science

Naval Postgraduate School
Monterey, California 93943-5118

bmichael@nps.navy.mil

Abstract

Intelligent software decoys employ deception tech-
niques to maintain the interaction between themselves
and calling processes or threads that violate the contracts
of the software components that the decoys defend. The
software decoy’s goal is to learn about the nature of such
interactions before either terminating the interaction or
treating the calling process or thread as a cyber combat-
ant. Software components can be wrapped at any level of
abstraction, from web applets to operating system calls.
It is foreseeable that the decoying actions, termination of
interaction, or counterattack by the decoy could in some
way violate the law of armed conflict. In this paper we
examine the response policy of software decoys in terms
of discrimination, necessity, proportionality, and chivalry
on the cyber battlefield.

1. Introduction

There has been a shift in the paradigm for computing
and communications within the U.S. Navy from platform-
to network-centric warfare [1], with the goal of maintain-
ing information superiority over adversaries by utilizing a
cooperative engagement grid that provides for the timely
exchange of information between U.S., allied, and coali-
tion forces about the ever-changing battlespace. A major
focus of the move to network-centric warfare has been on
integrating heterogeneous globally distributed systems
into an interoperable high-performance information grid.

The next shift in paradigm will likely result in what
could be termed “knowledge-centric warfare” [2]. In this
paradigm, the focus will shift from that of interoperability
between nodes at the physical, data, and information lev-
els to one of leveraging semantic interoperability among
the nodes of the cooperative engagement grid, with the
goal of improving the effectiveness of forces to share
knowledge with each other in a timely manner about the
competitive space elements of the battlespace.

Automation of the exchange of knowledge among
nodes in the cooperative engagement grid might be

spurred on by utilizing the concept of a “semantic web,”
as introduced by Berners-Lee, Hendler, and Lassila [3].
In the semantic web, knowledge of how to interpret data
and information is embedded in the web itself so that
software agents can automatically interpret the data and
information contained in web pages. For example, one
could envision software agents both automatically locating
and interpreting the contents of web pages in order to
generate and then deliver the latest strategic and tactical
information to military commanders.

However, Thuraisingham, Hughes, and Allen [4] con-
tend that for the semantic web to be effective “we need to
ensure that the data and information on the web is timely,
accurate, and precise.” The semantic web, if used for auto-
matically generating and disseminating situational-aware-
ness reports about the battlespace, could become a tempting
target for an adversary to attack. An adversary might try to
gain a competitive advantage over its opponent by reducing
in some way the timeliness, accuracy, or precision of data
and information utilized by the software agents on the tar-
geted cooperative engagement grid.

Consider the following scenario. An adversary com-
promises an opponent’s software agent; the software agent
is now a rogue agent whose goals are managed by the ad-
versary. In order to mislead the rival’s forces, the adver-
sary might task the rogue agent with modifying XML tags
used by the adversary’s foe to specify relationships be-
tween the location and strength of the adversary’s forces.
Other rogue agents might be given different goals, such as
to perform distributed denial-of-service attacks on the
targeted web or change the behavior of the applets associ-
ated with the content of web pages.

The foregoing scenario highlights the need for devel-
oping security policy and mechanisms to protect the se-
mantic web from sabotage. In this paper we discuss the
role that intelligent software decoys can play in defending
semantic webs and other computational structures com-
prising a cooperative information grid, with particular
emphasis on the constraints that would need to be placed
on the automatic responses of software decoys to sus-

To appear in Proceedings of the Twenty-sixth Annual Computer Software and Applications
Conference, IEEE (Oxford, England, August 2002).

pected attempts by rogue software agents to sabotage a
cooperative information grid.

2. Intelligent Software Decoys

Michael et al. [5] introduced the notion of cyber
Aikido, in which a software component tolerates violations
of its contract (e.g., receiving the wrong sequence and
type of arguments) in order to learn about the nature of
interactions with calling processes or threads; such a com-
ponent is referred to as an intelligent software decoy [6],
while the calling process or thread that violates the con-
tract is termed a cyber opponent. Here we use the term
“software component” in the context of component archi-
tectures as defined by Szyperski [7]. A software compo-
nent is a set of atomic components, with each atomic
component consisting of a module (i.e., set of classes,
procedures, or functions) and a set of resources (i.e., “a
‘frozen’ collection of typed items”). A software contract
[8] is a specification of the obligations and benefits be-
tween the component and the calling process or thread. In
a distributed system, the contract is a component’s public
interface that is advertised to other components.

Intelligent software decoys attempt to neutralize the op-
ponent by applying a cyber version of what is known in the
martial arts as the Unified Power of Attack [9], which con-
sists of the following sequence of actions: reducing or
eliminating the will of the opponent to attack, changing the
proximity of attack, and as a last resort reducing or elimi-
nating the ability of the opponent to attack.

The software decoy conducts information operations,
employing deception strategies to reduce or eliminate the
opponent’s will to violate the contract (e.g., by inserting
delays into responses to method calls made by the oppo-
nent), and to change the proximity of the software compo-
nent with respect to the opponent (e.g., directing the atten-
tion of the opponent to a honeypot). The software decoy at
some point, such as after recognizing a known pattern of
intrusion (e.g., a sequence of operations to effect a buffer-
overflow attack in application- or system-level software) or
learning about the strengths and weaknesses of the opponent
(e.g., that the opponent uses non-conventional means to
cause a buffer overflow, indicating that it is likely that the
opponent was created by a technology-savvy terrorist or
information warrior sponsored by a nation-state), either
terminates the interaction (e.g., closing a communication
port) or mounts an information warfare campaign against
the opponent, at which point the opponent is treated as a
cyber combatant. Here we define a cyber combatant to be a
proxy for an information warrior who has the rights under
international law to participate directly in armed conflict
during hostilities.

The formalism proposed by Michael et al. [5] for
specifying rules for runtime intrusion detection and
corresponding countermeasures is based on behavior pat-

terns over event traces and a catalog of decoy actions,
such as blocking or substituting certain responses of ap-
plications, middleware, or system commands.

Figure 1. A decoy-enabled atomic software component

The implementation of the formalism is based on auto-
matic instrumentation for event detection derived from the
behavior model of the system to be defended against in-
trusions, supporting the rapid wrapping of software com-
ponents as the software decoys learn about the nature and
source of attacks. Software components are wrapped with
decoy functionality on a selective basis; wrapping can be
performed at more than one level of abstraction, from ap-
plication-level objects such as web applets to low-level
operating system calls. If any of the assertions (e.g., pre-
conditions, postconditions, class invariants) built into the
component’s contract are violated, the software decoy
transfers the interaction with the opponent to an ante-
chamber [6] that is akin to a virtual sandbox; the
antechamber is either hosted by the operational system on
which the software decoy resides, or on a separate proces-
sor or platform in order to minimize the affect of the
monitoring and decoy actions (e.g., those of delay tactics)
on the availability and performance of computing re-
sources requested by legitimate users of the decoy-en-
abled software components.

request

contract

calling
process or

thread

reply

resources

To appear in Proceedings of the Twenty-sixth Annual Computer Software and Applications
Conference, IEEE (Oxford, England, August 2002).

All of the decoying actions are performed inside the
antechamber in order to protect the software component
and the system on which the component resides from the
effects of malicious requests for service. For instance, a
rogue agent could pass a character string that exceeds the
maximum buffer size allocated by a module for such
strings, with the intent to trick the module into executing a
Trojan horse when an exception is raised due to the re-
sulting buffer overflow. The software decoy will transfer
the call to the antechamber of the software component, in
which the call will be allowed to execute and the compo-
nent will respond to the calling process or thread using the
detection and deception rules with which the component
was instrumented.

Intrusion detection rules are textually separated from the
source code of the system, which allows for accumulating
and formalizing knowledge of typical intrusion patterns and
decoying strategies. The formalism provides for specifying
a broad spectrum of decoying strategies, from simple delay-
ing tactics to the simulation of the behavior of real applica-
tions, middleware, or operating systems.

3. Jus in Bello Applied to Software Decoys

There is some risk that enacting the response policy of
a software decoy could in some way violate the rules of
armed conflict, known as jus in bello. Wingfield [10] has
laid out a framework from which to evaluate whether
various acts taken as part of information warfare or infor-
mation operations are compliant with the rules of war.
The four customary guiding principles used in such an
evaluation are discrimination, necessity, proportionality,
and chivalry. Another dimension to be considered is
whether the interaction between two opposing parties is in
the stage of pre-hostilities or hostilities. We address each
of the guiding principles with respect to intelligent soft-
ware decoys, using the rogue-agent scenario given in Sec-
tion 1 as the motivating example.

3.1. Discrimination

Suppose that the software decoy identifies patterns of
behavior exhibited by the software opponent that indicate
that the opponent is trying to modify the behavior of the
software component such that the component will corrupt
the integrity of the XML tags. What response can the
software decoy provide to the opponent? First, the soft-
ware decoy must answer the following question: Can the
software decoy treat the opponent as a cyber combatant?
The answer is yes, according to the principle of discrimi-
nation, only if the software decoy can determine that the
opponent has the rights under international law to partici-
pate directly in armed conflict during hostilities.

Further, suppose that the software decoy can determine
that the opponent is a combatant through various means,

such as by recognizing a distinguishing pattern of attack or
the origination point of the attack known to be that of a
hostile military force. If the decoy has decided to discon-
tinue generating decoying actions and now move to reduce
or eliminate the ability of the combatant to attack, can the
software decoy launch a counterattack on the combatant?
The principle of discrimination limits the response of the
software decoy to be applied to the cyber opponent. In
response to the provocation, a software decoy cannot use
cyber weapons that would have an indiscriminate effect.
For instance, if the origin of the attack happens to be an
information infrastructure that is used by both combatants
and noncombatants alike, the attack response of the decoy
must be directed against a specific military objective on
the target infrastructure. This would preclude the soft-
ware decoy from, for instance, launching a computer
worm that could not precisely target the military objective
without harming the software components of noncombat-
ants on the shared infrastructure. (N.B.: The U.S. military
along with many of its foreign counterparts rely to a large
extent on the civilian information infrastructure for com-
puting and communications.)

Now suppose the software decoy does have precision-
guided cyber weapons at its disposal. Can these weapons
be used against the cyber combatant? From a technical
perspective the answer may be no because if a combat-
ant’s software component is damaged or destroyed, this
may result in harmful side effects on civilian software
components, such as the damaged military component
altering the state of an object such that the object exports
defective or inappropriate features to civilian components,
causing those civilian components to experience faults or
failures. The cyber opponent may intentionally build such
side effects into software components with the aim of de-
terring counterattacks.

The foregoing discussion applies to decoying re-
sponses too. For example, instead of counterattacking or
terminating interaction with the cyber combatant, a decoy
could continue to try to lessen the willingness of the com-
batant to attack by returning a faked but believable result
(e.g., part of an ontology used by the targeted semantic
web) to a process or thread, causing the receiving military
software component to generate side effects (e.g., a buffer
overflow) in a manner that harms civilian components.
One can contend that the indiscriminate use of side ef-
fects, either by the software decoy or cyber combatant,
would fail the litmus test for discrimination.

3.2. Necessity

The principle of necessity is used to determine what
amount of force a software decoy can employ against a
cyber combatant. For example, it would be unlawful for
the software decoy to launch a cyber weapon of mass de-
struction such as a lethal computer virus, or create an illu-

To appear in Proceedings of the Twenty-sixth Annual Computer Software and Applications
Conference, IEEE (Oxford, England, August 2002).

sion through deception, either of which would have an
effect beyond that required for accomplishing the military
mission at hand. The software decoy can be prepro-
grammed with only lawful means and methods for re-
sponding to provocation. A software decoy is an inani-
mate object, so it has no will of its own—it does what it is
programmed to do by the human information warrior.

In addition to the quantitative aspect of necessity (i.e.,
assessing the amount of force to be applied), there is a
qualitative aspect, that being the assessment of the type of
force to be applied. Certain types of cyber weapons will be
per se out of bounds for use in conflicts, those being the
analogues of for example biological weapons and transpar-
ent bullets. For instance, it would be unlawful for a soft-
ware decoy to launch remote method invocations that in-
struct an adversary’s software components, used for con-
trolling the production of industrial chemicals, to release
those chemicals (e.g., pesticides produced near a population
center or military installation) into the atmosphere.

3.3. Proportionality

The intelligence-gathering capability of software de-
coys makes it possible for decoys to determine the nature,
magnitude, severity, and source of an attack. For exam-
ple, cooperating software decoys may determine that their
present interaction with cyber opponents will, with high
probability, have a crippling impact on the cooperative
engagement grid the software decoys are suppose to pro-
tect. Given these circumstances, what should be the re-
sponse of the software decoy to the provocation? The
principle of proportionality provides guidance here. The
decoy should not naively apply the same amount of force
in return, nor should it necessarily use the same type of
cyber weapons or targets as those used by the cyber com-
batant. Instead, the software decoy must “take all reason-
able precautions” in selecting the deception or counterat-
tack response such that the response is not excessive in
relation to the concrete and direct military advantage an-
ticipated by the software decoy.

An issue here is can a military force delegate to the
software decoy the authority to judge whether all feasible
precautions have been taken, or what constitutes excessive
force? How would the software decoy determine when it
has collected and analyzed a sufficient amount of reliable
and accurate intelligence data to know the true nature of
the target of its deception or counterattack? It may turn
out that certain types of responses generated by software
decoys will require approval of a cyber military com-
mander that is akin to an oracle that has situational aware-
ness of the battlespace, which in term would need ap-
proval from a human military commander to provide the
response. Such a chain of command might hamper the
ability of the software decoy to generate effective decep-

tions due to the delays inherent in obtaining approval
through the chain of command.

Another issue is the following: How would a software
decoy determine with certainty that a response directed at
a military object will not have unintended consequences?
Software tends to be complex and large, making it diffi-
cult to test for the existence of such effects and software
bugs in general. In addition, there are limitations on the
time in which the software decoy must act before the cy-
ber combatant responds to the decoying actions. Testing
takes time and may not even be possible if the software
decoy or other decoys with which it cooperates cannot
infiltrate the adversary’s rogue agents or information in-
frastructure. Lastly, the passing of object code, such as is
done in runtime extensible virtual environments, makes it
even more difficult to test for side effects.

Regarding the legal standard applied by the United
States of “taking all reasonable precautions,” when soft-
ware decoys are used in a cooperative engagement grid by
allied or coalition forces, the decoys will be held to higher
standards such as that of the North Atlantic Treaty
Organization (NATO), which is “take all feasible precau-
tions.” Thus, a software decoy will need to have the abil-
ity to switch between sets of decoy-and-attack responses
corresponding to different legal standards as the composi-
tion of the allied or coalition forces change.

Designing software decoys to adhere to the Unified
Power of Attack is a way forward for minimizing the risk
of violating the principle of proportionality. In the first
two stages of attack, the software decoy deflects rather
than tries to harm the cyber opponent. Force is applied
against the opponent only as a means of self-defense and
option of last resort.

3.4. Chivalry

Software decoys rely on ruses of war to deceive an op-
ponent. For example, in response to the rogue agent that
is tasked with modifying the XML tags, the software de-
coy could try to deflect the cyber opponent by redirecting
the attention of the opponent to a honeypot that contains
faked XML tags that to the opponent appear to have
greater strategic or tactical value than those managed by
the software component it is currently attacking.

According to the principle of chivalry, ruses of war
cannot be used to kill, injure, or capture an adversary by
resort to perfidy. An example of a perfidious act by a
software decoy would be to feign a noncombatant status
during hostilities; this act is perfidious because it invites
the confidence of the cyber opponent into believing that it
is obligated to accord the software decoy protection as a
noncombatant, with intent to betray that confidence. The
danger here is that once that confidence is betrayed, the
opponent may attack real noncombatant software compo-

To appear in Proceedings of the Twenty-sixth Annual Computer Software and Applications
Conference, IEEE (Oxford, England, August 2002).

nents in the belief that those components are military tar-
gets masquerading as noncombatants.

During pre-hostilities, the software decoy can legally
take on a noncombatant appearance. It can also do so
while using deception to either reduce or eliminate the
cyber combatant’s will to attack or to change the prox-
imity of itself to the combatant. However, before the
software decoy can apply force (i.e., to reduce or elimi-
nate the ability of the combatant), the decoy must show its
true colors (i.e., identify itself as combatant).

However, a software decoy used by a combatant can
never legally take on a protected appearance, for example,
that of a software component belonging to a neutral state
or state not party to the conflict, as this would endanger
software components that really should be accorded pro-
tected status.

One issue that immediately comes to mind is what does
it mean for a cyber opponent to have misplaced belief or
confidence in something? Goldberg [11] and Hirstein
[12] have pondered the issue of whether software compo-
nents can possess conflicting representations that could
result in a form of software-based self-deception.

Another issue is what defines the appearance of a soft-
ware decoy? Is it the location of a software decoy within
an information grid? Is it defined by the specification of
the contract for a software decoy? Or might it be a com-
bination of these and other attributes of the software de-
coy, including the observation by an opponent of a decoy-
like behavior exhibited by the a software component?

Another level of complexity is introduced here by the
fact that software decoys can disguise themselves by al-
tering the appearance of software components. This cha-
meleon-like ability is supported by the use of polymorphic
types; polymorphism permits late binding of the message
interaction. For example, a software decoy can dynami-
cally change the number of arguments, the order of argu-
ments, or the data type or class of arguments of its inter-
face signature (i.e., the contract that is advertised to other
components).

4. Management of Deception Policy

Based on the foregoing discussion, we believe there is
a need to incorporate some means of managing the decep-
tion policy governing the responses that may be employed
by software decoys. If a software decoy contravenes any
of the four guiding principles, then it could be deemed to
be a cyber war criminal. Ultimately, however, the infor-
mation warrior and others higher up in the chain of com-
mand will be held legally culpable for the actions of the
decoy for two reasons: (i) to reiterate, the intent of the
information warrior is embedded in the deception and
attack responses of the software decoy and (ii) the com-
manders cannot delegate their authority in order to release

themselves from responsibility for the acts of their
subordinates—including the actions of decoys.

Wrapper

System
component

Wrapper

Intrusion

Supervisor

Interpreter

Rules for behavior
patterns and decoy actions

Operating System

System
component

Figure 2. Software-decoy architecture (from [5])

The supervisor shown in Figure 2 manages deception
policy. In this architecture, the supervisor coordinates the
exchange of information among software decoys and their
actions, although the software decoys are designed to be
able to operate in an autonomous manner when communi-
cation with the supervisor is not possible or ill advised. It
also instruments software decoys with behavior patterns
for use in detecting malicious behavior of calling threads
and processes, along with decoy actions to be taken when
those patterns of behavior are detected.

One advantage of such a management scheme is that a
military force, via the supervisor, could rapidly reprogram
the decoy defenses from that of a pre-hostilities mode to a
hostilities mode. In the pre-hostilities mode, certain types
of responses would not be available to the software decoy,
such as the use of potentially dangerous deception strate-
gies or cyber weapons of last resort. This approach would
remove to a large extent the need for the software decoy
to reason about the consequences of its actions in terms of
jus in bello and instead focus on applying tactics to
achieve effective deceptions against their opponents.

In contrast, the supervisor would be responsible for
reasoning about both the potential effects of applying spe-
cific sets of decoying strategies in various contexts of
conflict and the strategy for applying the decoy responses.
In this sense, the supervisor plays the role of a cyber
military commander (viz. Section 3.3). An integrated set

To appear in Proceedings of the Twenty-sixth Annual Computer Software and Applications
Conference, IEEE (Oxford, England, August 2002).

of computer-based tools, such as those identified in what
has been termed a “policy workbench” [13], would assist
the supervisor in specifying, reasoning about, maintaining,
and enforcing doctrine and policy about deception.

Another advantage of this management scheme is that
doctrine and policy developed for software decoys could
be integrated into a larger joint information operations and
warfare doctrine-policy base and be distributed to the su-
pervisors throughout the cooperative engagement grid. It
could also serve as a reference for automatically applying
different legal standards as they pertain to information
operations and warfare among allied and coalition forces.
However, care should be taken to not overly standardize
deception responses. As pointed out by Fowler and
Nesbit [14], “the most effective deception will be
imaginative and creative; it cannot be ‘legislated’ or ‘or-
dered’; and it must not become stereotyped or ‘bureauc-
ratized.’”

5. Conclusion

There are many open issues to be explored for evalu-
ating the appropriateness of responses of intelligent soft-
ware decoys to provocation in the context of jus in bello,
in addition to the locus for making such decisions (i.e.,
locally by the software decoy or globally by a supervisor).
Resolving such issues in the context of semantic webs that
will support cooperative engagement grids will require
consideration of the specific requirements and character-
istics of such grids, such as the fact that software compo-
nents comprising the web or grid will likely need to proc-
ess increasingly larger volumes of transactions as the
intensity of a conflict grows and there is a corresponding
need for more rapid and efficient sharing of knowledge
about the battlespace, with any of the interactions in-
volved in those transactions potentially requiring active
responses from software decoys.

6. Acknowledgements

I thank Thomas Wingfield of Aegis Corporation for
reviewing this manuscript and giving such a captivating
lecture, titled “How Not to be a War Criminal in Cyber-
space: 4 Easy Steps,” at the Phoenix Challenge 2002
Conference (San Antonio, Texas, 23 April 2002); that
lecture inspired me to try my hand at applying the guiding
principles of jus in bello to a software abstraction that I
think could shape the future of information operations and
warfare—the intelligent software decoy. I also thank
Gregory Larsen of the Institute for Defense Analyses for
clarifying for me his conceptualization of knowledge-cen-
tric warfare. This research is supported by the Naval
Research Laboratory under contract no. N41756-01-WR-

10433. The views and conclusions contained herein are
those of the author and should not be interpreted as neces-
sarily representing the official policies or endorsements,
either expressed or implied, of the U.S. Government. The
U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any
copyright annotations thereon.

References

[1] Cebrowski, A. K. and Garstka, J. J. Network-centric
warfare: Its origin and future. U.S. Naval Inst. Proc.
124, 1 (Jan. 1998), 28-35.

[2] Larsen, G. N. Institute for Defense Analyses,
Alexandria, Va. Interview, 18 Sept. 2001.

[3] Berners-Lee, T., Hendler, J., and Lassila, O. The
semantic web. Sci. Amer. 284, 5 (May 2001), 34-43.

[4] Thuraisingham, B., Hughes, E., and Allen, D.
Dependable semantic web. In Proc. Seventh Int.
Workshop Object-oriented Real-Time Dependable
Syst., IEEE (San Diego, Calif., Jan. 2002), 305-308.

[5] Michael, J. B., Auguston, M., Rowe, N. C., and
Riehle, R. D. Software decoys: Intrusion detection
and countermeasures. In Proc. Workshop on Inf. As-
surance, IEEE (West Point, N.Y., June 2002).

[6] Michael, J. B. and Riehle, R. D. Intelligent software
decoys. In Proc. Monterey Workshop: Eng. Automa-
tion for Software Intensive Syst. Integration, n.p.,
(Monterey, Calif., June 2001), 178-187.

[7] Szyperski, C. Component Software: Beyond Object-
Oriented Programming. Addison-Wesley: Harlow,
Eng., 1999.

[8] Meyer, B. Object-Oriented Software Construction.
Prentice-Hall: Upper Saddle River, N.J., 1998.

[9] Westbrook, A. and Ratti, O. Aikido and the Dynamic
Sphere. Rutland, Vt.: Charles E. Tuttle Co., 1970.

[10] Wingfield, T. C. The Law of Information Conflict:
National Security Law in Cyberspace. Falls Church,
Va.: Aegis Research Corp., 2000.

[11] Goldberg, S. C. The very idea of computer self-
knowledge and self-deception. Minds and Machines
7, 4 (Nov. 1997), 515-529.

[12] Hirstein, W. Self-deception and confabulation. J.
Phil. Sci. 67, 3 (Suppl. S, Sept. 2000), S418-S429.

[13] Sibley, E. H., Michael, J. B., and Wexelblat, R. L. Use
of an experimental policy workbench: Description and
preliminary results. IFIP Trans. A-6 (1992), 47-76.

[14] Fowler, C. A. and Nesbit, R. F. Tactical deception in
air-land warfare. J. Electronic Defense 18, 6 (June
1995), 37-44 and 76-79.

